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1. Introduction: From Data Deluge to Information
Desert

Genomic sequences are being deciphered at an unprec-
edented pace, and the demand for sequence data is also

continuously growing, fuelled by thrilling potential applica-
tions which range from personalized genome-based medicine
and targeted cancer therapies to microbial strain optimization
and bioterrorism prevention. Sophisticated sequencing pro-
cedures ultimately result in plain text files in which the DNA
molecules, the carriers of the precious code of life, are
represented by endless strings of the characters A, C, G, and
T. These sequences are entirely incomprehensible and all
but useless unless meaningful biological facts are associated
with them in the course of genome annotation. The Webster
dictionary defines annotation as “a note added by way of
comment or explanation”. In molecular biology databases,
such notes typically contain information about the cellular
role and mechanism of action of genes and their products.
Throughout the 1980s and most of the 1990s, the biological
community critically relied on high-quality protein annotation
produced by relatively small groups of enthusiasts at the
PIR,1 Swiss-Prot,2 and DDBJ3 databanks in a process
involving careful analysis of experimental facts published
in the literature as well as bioinformatics analyses by highly* Address correspondence to the author at Technische Universita¨t München.

Dmitrij Frishman received a M.S. in Biomedical Electronics from the Saint
Petersburg Electrotechnical University in 1984 and a Ph.D. in Biochemistry
from the Russian Academy of Sciences in 1991. An Alexander von
Humboldt Research Fellowship he received at the end of 1991 allowed
him to join the Pat Argos group at the Biocomputing Department of EMBL
in Heidelberg, where he pursued postdoctoral training in structural
bioinformatics until 1996. He subsequently joined the Munich Information
Center for Protein Sequences as a senior scientist and later became
Deputy Director of the Institute for Bioinformatics at the German Research
Center for Health and Environment. In 1997, he cofounded a bioinformatics
company called Biomax Informatics AG, which provides computational
solutions for better decision making and knowledge management in the
life science industry. Since 2003, Dmitrij Frishman has been Professor
for Bioinformatics at the Technical University of Munich. His current
research interests focus on genome annotation, prediction and analysis
of protein interactions, and structural genomics.

3448 Chem. Rev. 2007, 107, 3448−3466

10.1021/cr068303k CCC: $65.00 © 2007 American Chemical Society
Published on Web 07/21/2007



experienced staff. This time-consuming process resulted in
invaluable datasets which represent the core of today’s
protein knowledge base.

At the onset of the genomic era, essentially every new
protein sequence determined received the attention of human
experts and was annotated to the maximally possible extent.
While planning early genome sequencing projects, typically
10% of the budget was allocated for bioinformatics, including
careful curation of data. In the past 10 years, the speed of
sequencing has continuously grown while the total number
of computational biologists directly involved in manual
curation of molecular data has increased only insignificantly.
As illustrated in Figure 1, the dramatic fall of sequencing
prices is accompanied by the decrease in the percentage of
annotated proteins from nearly 100% only a decade ago to
less than 5% now. Assuming that one needs on average
roughly 30 min to assess published facts and bioinformatics
evidence for one protein, one thousand annotators would have
to work 1 year long, 8 h a day toannotate all 5 million
sequences that are currently known. However, since the size
of the protein database has been consistently doubling every
18 months, the moving target of annotating all proteins will
never be achieved. On a more anecdotal vein, according to
some conservative estimates,4 the total number of proteins
on Earth is in excess of 1010. I do not want to speculate what
kind of human resources one would need to analyze all these
proteins by hand.

A new generation of superfast and ultralow-cost DNA
sequencing technologies (reviewed by Metzker)5 is expected
to have the throughput of hundreds or even thousands of
megabases per day.6 The National Human Genome Research
Institute issued a request for applications, seeking to further
reduce the cost of sequencing mammalian genomes by 4
orders of magnitude: from tens of millions of dollars today
down to merely a thousand dollars.7 These new technologies
also require much more modest in-house resources than
current state-of-the art techniques, and they will render
sequencing entire genomes accessible to relatively small
institutions or even individual research groups which will
not be able to invest significant time and resources into
manual curation of the resulting data. These future advances
will convert genome sequencing into an easily accessible

routine lab technique and will often result in a situation where
sequence data do not even get submitted to the central
repositories.

In addition to the quantitative challenge outlined above,
we are increasingly facing a qualitative challenge: for most
of the newly determined proteins, there is simply no
experimental evidence to annotate, as they have never seen
a test tube. No primary experimental information is available,
nor are these proteins described in journal articles, and any
functional inference for them can only be made by homol-
ogy-based transfer of annotation. Even for the best studied
organism, Escherichia coli, experimental information is
available for only 54% of the gene products.8 Instead, we
are observing a surge in the quantity of high-throughput
experimental data available for entire proteomes. For ex-
ample, the number of proteins for which some information
on protein-protein interactions is available is approaching
100 000. Individual biochemical experiments are phased out
by mass measurements often plagued by artifacts and noise.
In contrast to the detailed and information-rich results of a
classical biochemical study, high-throughput experiments
typically deliver a single measured value for each protein
under study which cannot be easily interpreted in isolation.

To make things worse, there is even no agreement on the
actual number of genes in a completely sequenced genome.
Especially for complex genomes, the set of genes predicted
for a particular chromosome is still substantially dynamic
and subject to constant change as cDNA and EST databases
grow, more experimental data becomes available, and
automatic gene predictors get better. For example, in 2003,
Collins et al.9 revised their own annotation of 198 out of
936 genes (including noncoding and pseudogenes) of the
human chromosome 22 produced 4 years earlier.

The main difficulty of writing a review about genome
annotation lies in finding an appropriate scope. Today’s
bioinformatics is essentially genome informatics, and virtu-
ally any new method, database, or biological discovery is
relevant for analyzing genomic data. Here, I mainly focus
on modern procedures used for manual genome annotation
and its current status as well as computational methods and
software infrastructure for analyzing protein function at the
genomic scale (Figure 2). I also discuss possible ways to
reduce the error level of automatically generated annotation
both by experimental means and by using machine intel-
ligence. There are many important aspects of genome
analysis that could not be addressed here but have been
extensively reviewed elsewhere. Problems in gene prediction
are summarized only briefly, with the main focus on
improving the quality of functional inference; for in-depth
coverage of computational gene finding, the reader is referred
to specialist publications (see below). Excellent accounts on
text mining,10 pseudogenes,11 alternative slicing (Artamonova
and Gelfand, this volume), finding microRNAs and their
targets,12,13 gene regulation,14,15 chemical approaches in
protein function annotation,16 genome comparison,17 and
biological data integration18 exist.

2. Gene Modeling: Still an Open Problem

Gene prediction is a crucially important, quality determin-
ing stage in genome annotation. Missed genes translate into
gaps on reconstructed metabolic maps as well as misinter-
preted microarray experiments, while missed or overpredicted
exons and fused genes complicate interpretation of sequence

Figure 1. Cost per finished base pair239and percentage of manually
annotated sequences. The latter is estimated as the ratio of the
number sequences in the SwissProt database and all known
sequences available in the Trembl database.
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alignments, delineating functional specificity of proteins, and
building structural models.

Remarkable advances in eukaryotic gene prediction ac-
curacy achieved in the past decade can be easily seen by
comparing evaluations of state-of-the art methods made 10
years ago19 and just recently.20 Specificity and sensitivity at
both exon and nucleotide levels have been substantially
improved, especially due to the application of novel strategies
based on alignment of closely related genomes.21 Besides
the use of dual genomes, important sources of information
for eukaryotic gene prediction are expressed sequences (EST
and cDNA). However, even the best currently available
automatic tools are still able to accurately define complete
structures for only 40% of human genes. Gene prediction in
prokaryotes is an easier, but in no way completely solved,
problem. Nielsen and Krogh22 estimated that 60% of
prokaryotic genes in public databases have wrong predicted
starts (another estimate- 40% (Mark Borodovsky, private
communication)) and that 30% of all genomes are overan-
notated by more than 5%, while nearly 8% are underanno-
tated, particularly due to difficulties in correctly detecting
short genes. A detailed review of modern computational
methods to predict genes from DNA sequences is beyond
the scope of this article and has been done effectively by
specialists in the field.23-25 Here, we focus on selected aspects
of gene prediction in the context of functional annotation of
genomes (see Figure 3).

Given that six out of every ten predicted genes in complex
eukaryotic organisms contain errors, high-quality gene
models can only be produced by hand curation and improve-
ment of results generated by a host of carefully selected
automatic algorithms. This tedious and time-consuming task
involves resolving conflicts between alternative gene models

by referring to literature sources, identifying sequence motifs
and domains, and incorporating supporting evidence derived
from alignments with EST, cDNA, and reference gene
structures, if available. The first experience in manual
improvement of predicted gene structures was accumulated
while annotating theSaccharomices cereVisiae genome, in
which only slightly more than 200 genes have introns. The
task is incomparably more complicated for complex multi-
exon metazoan genes. Human genes models are being
actively annotated by a powerful consortium including the
Sanger Center, RIKEN, the Joint Genome Institute, Geno-
scope, and the Washington University Genome Sequencing
Center, which makes them available via the Vertebrate
Genome Annotation Database (VEGA).26 A growing body
of manually annotated gene models for mouse, dog, pig, and
zebrafish is also available via VEGA. Among other model
genomes with comprehensively curated gene structures are
Caenorhabditis elegans,27 Arabidopsis thaliana,28 andDroso-
phila melanogaster.29 In general, systematic maintenance and
improvement of gene models for eukaryotic genomes can
only be implemented within large-scale annotation efforts
such as Ensembl.30

There are two ways to cope with the gene modeling
challenge at large scale: either by intelligent software-based
decision support or through increasing the number of
contributing scientists by involving the broad biological
community into genome annotation. Software tools have been
developed that attempt to automate the process of combining
gene calls produced by different algorithms. GeneComber31

selects the most reliable coding regions predicted by Gen-
scan32 and HMMgene33 by applying simple logical rules to
exon probabilities calculated by these methods. A more
sophisticated approach, JIGSAW,34 requires a set of trusted

Figure 2. General overview of the genome annotation process.
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genes for a given organism to be available. Based on these
training data it assigns relative weights to each genomic
feature and uses dynamic programming to integrate evidence
from any given number of sources, includingab initio and
similarity-based prediction techniques, known gene indices,
cDNA alignments, and predicted splice sites.

On the other hand, in view of the current rate of data
generation, some researchers advocate wide involvement of
the biological community as a promising way of augmenting
the depth and quality of genome annotation.35 Although this
approach has its intrinsic problems, such as potential lack
of consistency, it also has the advantage of attracting highly
motivated biologists willing to share their specific problem
domain expertise not easily accessible to professional cura-
tors. While general purpose software solutions to support
community-wide genome annotation have been available for
quite some time (see below), specialized resources for
collective and distributed modeling of gene structure are now
beginning to emerge. For example, yrGATE (Your Gene
structure Annotation Tool for Eukaryotes)36 allows annotators
to access over the Internet precalculated exons, evaluate
supporting evidence (such as EST alignments), introduce
custom evidence, edit the DNA sequence to correct errors,
and submit their annotation, including user-defined exons,
for community review.

Another major bottleneck in high-throughput gene finding
lies in the fact that most of the individual gene recognition
algorithms require a training set of known genes. Compiling
such experimentally validated sets is a nontrivial task even
for highly annotated model genomes, and it may not be
possible at all for less studied genomes. In order to
circumvent this problem, self-training algorithms for prokary-
otes attempt to extract reliable open reading frames that either
are confirmed by alignments with known proteins37 or are
long enough to make the probability or their occurrence by
chance very low.38,22GeneMarkS39 finds bacterial gene starts

using an unsupervised training procedure which involves
iterative cycles of gene prediction and detection of ribosome
binding sites in gene upstream regions by Gibbs sampling.
In a significant recent advance, a self-trainingab initio gene
prediction technique for eukaryotes has been developed.40

After initially estimating parameters of Markov chains based
on compositional features of the DNA sequence or suf-
ficiently long Open Reading Frames (ORFs), the algorithm
proceeds by systematically refining the set of trusted genes
and updating the HMM architecture until convergence.

In many practical applications of genome sequencing, it
is desired to quickly obtain low coverage genome assembly.
Errors in DNA sequences can be efficiently identified by
evidence-based gene predictors that detect frameshifts and
in-frame stop codons based on spliced alignment with EST
and cDNA.41,42 Ab initio framshift finding, especially in
eukaryotic genomes, is a much more difficult task, and most
of the gene predictors cannot handle sequence errors. The
FrameD algorithm43 allows for detecting and correcting
frameshifts in prokaryoric genomes and EST sequences by
explicitly modeling deletions and insertions as additional
edges on a directed acyclic graph on which every path
represents a possible gene prediction. In ESTscan,44 expected
probabilities of insertions and deletions are utilized to build
an error-tolerant hidden Markov model of coding regions in
EST. Overall, accurate gene finding in sequence data
obtained by low coverage sequencing as well as in short
contigs and ESTs of poor quality still represents a significant
challenge.

In summary, in addition to the obvious need for more
accurate prediction algorithms which, in particular, should
be capable of handling incomplete and low-quality sequence
data, further progress in obtaining the complement of protein-
coding genes of acceptable quality will require better models
of human logic created by intelligently combining various
computational methods, an increase in the degree of automa-

Figure 3. Typical gene prediction pipeline.
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tion by employing self-training algorithms, as well as
stronger reliance on the broad support of the biological
community.

3. Manual Annotation of Genomes

3.1. Islands in The Sea: Manual Annotation of
Model Genomes

In spite of the growing maturity and usefulness of
automated bioinformatics and linguistic methods, reliable
high-quality annotation of sequence data can only be
produced by careful manual curation. In general, only a
human expert can draw from the biomedical literature and
appropriately represent experimentally determined functional
information. Manual annotation remains the only way to
make the crucial step from merely displaying the description
line of the best database hit for a given protein, as is done
by automated methods, to formulating its precise functional
role, carefully documenting data origin, validating computer-
generated information, and assigning confidence levels to
various pieces of evidence.

Scientific curators of genomes have been compared to
museum curators who systematically collect and display
information on art objects.45 In addition to encyclopedic
knowledge of biology combined with bioinformatics exper-
tise, they are also required to have strong communication
and even diplomatic skills, allowing them to preserve
neutrality while resolving conflicts that may arise between
members of the scientific community centered around a
certain model organism. Full-time genome annotators in large
organizations, such as TIGR, EBI, or MIPS, acquire a special
professional status which, in contrast to standard scientific
careers, stresses teamwork toward achieving the highest
possible data quality over individual ambitions. Annotation
teams strive to improve data quality and consistency by
developing standard operational procedures and rules for
capturing and describing data in a particular knowledge
domain, often summarized in publicly available manuals (see,
e.g., ref 46).

Most of the past and current manual annotation efforts
focus on a limited number of selected model genomes (Table
1). Beyond sequence data, model organism databases cover
a broad range of biological aspects, including metabolic and
signaling pathways, transcription units, known protein struc-
tures, computational models, and disease and phenotype
information. With the advent of high-throughput omics
technologies, annotation groups are actively incorporating
datasets from microarray, RNAi, two-hybrid, SAGE, and
other experiments and linking them to functional annotation.

Model genome projects represent community efforts and
are usually characterized by close collaboration between
bioinformaticians and biologists.47 For example, over 100
researchers continually provide updates to thePseudomonas
Genome Database,48 typically without solicitation. The
EcoCyc database49 formed an advisory board consisting of
leading scientists to guide its work and partners with outside
experts who help annotate individual cellular systems. The
Saccharomices Genome Database (SGD) is getting 50 user
mails a week reporting new data and inaccuracies in the
existing annotation.45 It also cooperates with remote curators
who spend two weeks a year at SGD, where they take part
in hands-on practical work, meetings, and discussions with
the core staff.

Collins et al.9 noted that a detailed annotation of 1% of
the human genome, including bioinformatics analyses,
manual curation, and experimental verification, took 6 person
years to complete. However, there is little doubt that in a
reasonable time frame the entire human genome will be
annotated to the highest possible standard of quality due to
its crucial importance. Significant progress has been made
in manual annotation of smaller microbial genomes se-
quenced a decade ago. Just recently (September 2006), the
EcoCyc team reported that it has manually curated all
Escherichia coligene products. For 3557 out of 4449E. coli
genes, summaries written by human experts are available
based on over 14 000 literature citations, while for the
remaining genes no literature references are available. The
SGD database has sufficient staff to incorporate all yeast-
related references as they appear.45

Starting from an initial seed annotation of the most
established model genome within a given community, quick
expansion is taking place by adding further closely related
species and thus leveraging on already available annotation
and expertise of highly specialized scientific curators. One
of the prominent examples of this approach is the MIPS
fungal genome database (mips.gsf.de/projects/fungi), which
started more than a decade ago as the central resource for
Saccharomices cereVisiae50 and then added careful manual
annotation of three further completely sequenced fungal
genomes,Neurospora crassa, Fusarium graminearum, and
Ustilago maydis, which, combined with automatic annotation
of all 38 sequenced fungal genomes, represents a compre-
hensive comparative fungal genome resource. In a similar
fashion, both MIPS and TIGR are expanding their plant
databases from the coreArabidopsis thalianadataset to
multiple species including maize,Medicago truncatula, Lotus
japonicus, rice, tomato, wheat, potato, and others.

Overall, the total number of model genomes that are being
actively curated by hand is probably on the order of 30, while
the Genomes Online Database51 currently lists over 2000
genome sequencing projects. The smaller percentage of
sequences annotated manually, the more precious these
datasets become for the biological community, as they
represent the only available source of trustworthy information
and serve as a gold standard for benchmarking computational
methods.

3.2. Protein −Protein Interactions
While the amount of mass data on protein-protein

interactions obtained by high-throughput techniques, such
as the two-hybrid system, is quickly growing, manually
annotated protein interactions are a relatively rare commod-
ity. Experimental investigation and annotation of protein

Table 1. Selected Manually Curated Model Genomes

organism URL ref

Escherichia coli ecocyc.org 49
Bacillis subtilis genolist.pasteur.fr/SubtiList/ 231
Saccharomices cereVisiae mips.gsf.de/genre/proj/yeast 50

yeastgenome.org 45
Dictyostelium discoideum dictybase.org 232
Caenorhabditis elegans wormbase.org 233
Drosophila melanogaster flybase.org 234
Mus musculus www.informatics.jax.org 235
Rattus norVegicus rgd.mcw.edu 236
Homo sapiens vega.sanger.ac.uk/Homo_

sapiens/index.html
26

Arabidopsis thaliana mips.gsf.de/proj/thal/db 28
www.arabidopsis.org 237
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interactions is being done nearly exclusively for several well-
studied model organisms. For example, the DIP database52

contains interactions from 110 organisms, but 96% of them
are from just eight organisms:D.melanogaster, yeast,E. coli,
C. elegans, H. pylori, human, mouse, and rat.S. cereVisiae
is the undisputed champion in terms of quantity and quality
of reliable information per each gene. The MIPS yeast
interaction database MPact,53 initiated more than a decade
ago, is the most complete source of interactions for this
organism and often serves as a gold standard against which
the quality of high-throughput data54,55 and bioinformatics
methods is being assessed. On average, MPact contains 2.6
manually annotated interactions per protein for 1500 proteins,
and each interaction is supported by 1.2 evidences, with 2.5
interactions described in each literature reference. Another
carefully annotated MIPS dataset contains interactions of over
900 proteins from mammalian species, primarily in human,
mouse, and rat.56 A much larger literature-derived human
dataset involving more than 30 000 interactions for over
20 000 proteins is available via the Human Protein Reference
Database.57

3.3. Ontologies
Biological ontologies provide an extremely efficient

framework for structuring and organizing functional informa-
tion about proteins. They constitute a common language for
formalizing knowledge about cellular roles of gene products
based on a controlled vocabulary and play a crucial role in
streamlining and standardizing annotation work. Ontologies
are a major element of data integration, as they ensure
interoperability of databases and allow simultaneous querying
of multiple genomes. In contrast to free text annotation,
structured terminologies are computationally tractable, mak-
ing them a standard tool for comparing genomes, analyzing
genetic networks, and linking annotation to literature. The
general principles of biological ontologies have been recently
reviewed by Bard and Rhee.58

Wide use of ontologies in biology was provoked by the
advent of the genomic era. Tellingly, the first functional role
catalog of proteins was developed as part of theEscherichia
coli genome annotation effort long before the genome was
completely sequenced. As all subsequent ontologies adopted
in molecular bioinformatics, this catalog was hierarchically
organized according to the complex hierarchical nature of
biological knowledge. This first version of the catalog,
reflecting the annotation status as of 1992,59 covered 1717
E. coli gene products, contained only six most general
categories (Intermediary metabolism, Biosynthesis of small
molecules, Macromolecule metabolism, Cell structure, Cel-
lular processes, Other functions), and had up to three levels
of hierarchy. For example, nine gene products known at that
time were classified as belonging to the top category
“Biosynthesis of small molecules”, with their second and
third classification levels being defined as “Amino acids”
and “Histidine”, respectively. The most up-to-date version
of the Riley catalog, MultiFun,60 contains 10 major categories
and up to five hierarchical levels.

The Riley approach was later further developed and
substantially extended in the MIPS Functional Catalog
(FunCat) to accommodate the much more complicated
biology of S. cereVisiae.61 It was later adapted and used to
annotate plant and animal genomes as well as a number of
prokaryotic organisms. The modern version of FunCat62 has
a total of 1307 individual categories. The 27 top level
categories serve as the origin to a hierarchical tree-like

structure which may contain up to six subcategories (Figure
4). An essential novel feature of FunCat is its multidimen-
sionality, meaning that any protein can be ascribed to
multiple categories. The most valuable aspect of the FunCat
project is the ongoing manual assignment of functional
categories to gene products in the expanding set of genomes.
Hand-curated FunCat annotaton is currently available for four
eukaryotic organisms (S. cereVisiae, N. crassa, A. thaliana,
and H. sapiens), four eubacterial organisms (Helicobacter
pylori, L. monocytogenes, L. innocua, andB. subtilis), and
one archaeal organism (T. acidophilum). These genomes
collectively code for 78 883 proteins, out of which FunCat
assignments are available for 48 638 gene products, or more
than 60%.

The Gene Ontology (GO) has become a community
standard for annotating genomes of multicellular organisms.
GO describes biological roles of genes and gene groups in
terms of attributes defined by three major branches: mo-
lecular function, biological process, and cellular component.63

In contrast to FunCat, which is organized as a simple tree,
GO is built on the Directed Acyclic Graph (DAG) architec-
ture, in which a child node may have multiple parents. An
even more important difference is that GO is a much more
detailed classification than FunCat: it currently contains 9805

Figure 4. Structure of the MIPS Functional Catalog: (a) all top-
level categories; (b) the category “11. Transcription” fully expanded.
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biological process terms, 7076 molecular function terms, and
1574 cellular component terms. Manual GO assignments are
available for 158 107 gene products from 30 genomes (The
Gene Ontology Project, 2006), including the most important
model organisms, such as fly and mouse. Furthermore, the
UniProt database has adopted the GO nomenclature and is
providing GO assignments for a quickly growing set of
proteomes, including human.64 However, most of these
assignments are made electronically, and only 1% of database
entries have been associated with GO terms manually.

High-quality functional categorization of gene products
is arguably the most important aspect of genome annotation
for interpreting results of high-throughput experiments in a
biological context. For example, functional commonalities
between coexpressed genes identified by microarray experi-
ments are typically established by delineating significantly
enriched or depleted ontology terms in respective gene lists.65

Functional categories are also a useful level of abstraction
for analyzing protein interaction data.54

3.4. Cellular Localization

A comprehensive source of information on protein sub-
cellular location is the UniProt database.66 The UniProt
annotation has been used to train influential algorithms for
predicting cellular localization from a sequence, such as
TargetP67 and PSORT.68 However, many UniProt assign-
ments are marked as “potential”, “probable”, or “by similar-
ity”, indicating they are not explicitly corroborated by
experimental data. PSORTdb69 uses the UniProt annotation
as a starting point to create a manually curated high-quality
dataset called ePSORTdb, which currently describes local-
ization of over 2000 bacterial proteins.

Many genome databases also contain manually annotated
localization assignments. One special aspect of both FunCat
and GO systems is that they consider protein localization in
the cell as a functional category. For example, the FunCat
top-level category “70. Subcellular localization” distinguishes
25 different types of possible localizations, some of which
are prokaryote-specific (e.g., 70.37 prokaryotic nucleoid),
some of which are universal (e.g., 70.32 flagellum), some
of which are only relevant for fungi (e.g. 70.29 bud/growth
tip), while others apply to different eukaryotic organisms,
including plants. This means that for all organisms with
manual FunCat assignments, careful annotation of protein
localization is also available. OrganelleDB70 consolidates
available localization data for 25 000 eukaryoic proteins

derived from original model genome databases, such as those
listed in Table 1, as well as from the Gene Ontology resource.

3.5. EC Numbers and Metabolic Pathways
The hierarchical classification of enzymatic reactions

known as the EC (Enzyme Commission) system is one of
the most widely used bio-ontologies established long before
the genome sequencing era. Each EC number is a unique
code which describes enzyme activity at four progressively
finer levels of detail. Enzyme classification with a plethora
of associated information is available via the BRENDA
resource,71 where it is collected based on a literature survey.
EC numbers represent an integral part of functional annota-
tion in main-stream databases such as Uniprot.

At the whole genome level, systematic assignment of EC
numbers creates the basis for organizing individual reactions
into metabolic pathways. The KEGG pathway database72

maintains a growing set of manually drawn metabolic maps
(currently 306) which can be considered as general, organ-
ism-independent enzyme networks. Over 40.000 organism-
specific pathways have been computationally generated by
mapping EC numbers assigned to gene products from a
specific genome to the generic maps. A somewhat different
concept underlies the MetaCyc database,73 where manually
curated objects are representative of experimentally deter-
mined metabolic pathways rather than generic multispecies
maps as in KEGG. The latest version of MetaCyc contains
700 pathways from over 600 species. Finally, the Reactome
knowledge base74 is primarily devoted to human metabolic
and regulatory pathways. It pursues an interesting com-
munity-based annotation model. A panel of editors first
determines priority areas of annotation and then invites
established bench scientists to annotate a specific information
module. Completeness and consistency of data is enforced
by specially designed software. Annotation submitted by
researchers is further refined by Reactome staff members.

3.6. Databases of Orthologs
The NCBI’s COG database75 can be viewed as a large

collection of phylogenetic profiles. It is one of the most
widely used genomic datasets because of its enormous
usefulness for comparative genomics and protein function
prediction. Orthologs are initially inferred automatically by
all-against-all similarity comparison of gene products and
subsequent identification of mutually consistent best bi-
directional similarity hits. The resulting ortholog groups are

Table 2. On-line Genome Databases

no. of genomesa

genome database eucaryotic eubacterial archaeal URL ref

Ensembl 33 www.ensembl.org 209
UCSC Genome Browser 30 genome.ucsc.edu 208
PEDANT 63 409 31 pedant.gsf.de 238
Comprehensive Microbial Resource 329 26 cmr.tigr.org 210
IMG 13 356 28 img.jgi.doe.gov 217
MaGe 27 www.genoscope.cns.fr/agc/mage 214
manndb 82 manndb.llnl.gov 213
SEED 562 643 37 theseed.uchicago.edu 90
MAGPIE 3 116 14 magpie.ucalgary.ca 202
MicrobesOnline 304 26 www.microbesonline.org 212
PUMA2 1047 611 46 compbio.mcs.anl.gov/puma2 207
KEGG 85 388 29 www.genome.jp/kegg 72

a These numbers are not comparable with each other, as they refer both to completely sequenced and incomplete genomes, which, in some cases,
may include only a few genes.
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being manually curated to exclude possible erroneous as-
signments. In particular, multidomain proteins are manually
split into individual domains. The prokaryotic and eukaryotic
versions each contain nearly 5000 COGS, with the former
covering 75% of gene products in completely sequenced
genomes of microorganisms, and the latter covering 54% of
gene products in seven model eukaryotic organisms. Some
major genome resources have developed their own orthology
databases. For example, KEGG introduced the KO system,
which combines orthologous relationships with pathway
information.72

4. From Gene-By-Gene Annotation to Hierarchical
Modular Representation of Proteomes

Proteins in the cell typically perform their function by
engaging either in direct physical interactions or in functional
interactions by getting involved in the same cellular process
with other proteins. The complex structure of functional
relationships can be mathematically described by networks
where proteins or genes are nodes and connections between
the nodes reflect different kinds of associations. Investigating
the topology of protein interaction, metabolic, signaling, and
transcriptional networks allows researchers to reveal the
fundamental principles of molecular organization of the cell
and to interpret genome data in the context of large-scale
experiments. Such analyses have become an integral part of
the genome annotation process: annotating genomes today
increasingly means annotating networks.

Modularity has emerged as one of the major organizational
principles of cellular processes. Functional modules are
defined as molecular ensembles with an autonomous func-
tion.76,77 Proteins or genes can be partitioned into modules
based on shared patterns of regulation or expression,
involvement in a common metabolic or regulatory pathway,
or membership in the same protein complex or subcellular
structure. For example, within protein complexes, a certain
part of their constituent components form large cores
characteristic for a given complex while other, typically
smaller, groups of proteins systematically occur together in
different complexes, forming stable functional modules
which can be flexibly used in the cell in a variety of
functional contexts.78 Modular representation and analysis
of cellular processes allows interpretation of genome data
beyond single gene behavior. In particular, modules represent
a convenient framework for studying the evolution of living
systems.79-82

Novel manual annotation strategies provide for joint
curation of gene groups belonging to the same functional
module, often across many genomes, in order to improve
the quality of assignments and, importantly, to increase the
speed of annotation work. For example, the MIPS annotation
group is moving from annotating individual protein interac-
tions to experimentally derived multiprotein complexes. The
MIPS Mammalian Protein Complex Database currently
contains literature-curated data on 122 complexes involving
643 gene products.83

Algorithmically, modular architectures can be defined as
densely interconnected groups of nodes on biological net-
works84 (Figures 5 and 6). Automated tools to delineate
statistically significant subnetworks based on a wide spec-
trum of protein and gene attributes allow researchers to attach
functional roles to previously uncharacterized genes involved
in known modules as well as to discover previously unknown
modules.85-87 Alternatively, one can define functional mod-

ules as groups of genes assigned to the same MIPS FunCat
category.88 Dependent on the desired degree of detail, this
can be done at different levels of functional hierarchy, but

Figure 5. General overview of the function prediction process.
Computational predictions and experimental data are used to build
a network of functional associations between proteins. Densely
interconnected groups of proteins on biological networks often
correspond to functional modules.

Figure 6. Functional association between the tryptophan syntase
beta chain (trpB) fromEscherichia coliand several other proteins
predicted by different context-based methods by the STRING154

server. Nodes on the graph represent proteins functionally coupled
with trbB while edges of different color represent different types
of functional association: chromosomal neighborhood (green
edges), gene fusion (red edges), phylogenetic profiles (blue edges),
conserved coexpression of genes (black edges), experimental data
(e.g., protein-protein interactions), database annotation (e.g.,
KEGG), and literature mining.
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generally the most natural choices are categories at the
second-highest level which reflect specific cellular processes
such as “ribosome biogenesis” or “oxidation of fatty acids”.
Second-level FunCat modules were used by Petti and
Church89 in their study of coregulated functional module pairs
within the S.cereVisiae transcriptional network. In fact,
systematic assignment of FunCat categories to all gene
products in a given genome essentially means defining a
hierarchy of functional modules.

A conceptually similar approach has been adopted in the
SEED annotation environment.90 SEED operates with sub-
systems which are defined as a set of related functional roles
and are thus a more general concept than functional modules.
Subsystems can correspond to metabolic pathways, structural
complexes, or any other cellular processes and components.
In contrast to traditional gene-by-gene annotation of one
single genome, SEED enables human experts to curate
specific subsystems in multiple genomes simultaneously,
achieving much higher annotation quality.

5. Experimental Annotation of Genomes
It is obvious that any detailed biochemical experiment that

sheds light on the function of a yet uncharacterized genomic
ORF helps to illuminate the inner workings of the cell and
ultimately contributes to genome annotation. Most such
studies are problem-oriented, hypothesis-driven investigations
motivated by the particular interests of individual research
groups. On the other hand, whole-genome experiments
published in the scientific literature are essentially discovery-
oriented endeavors in which one high-throughput method,
such as the two-hybrid system for detecting protein interac-
tions, is applied to elucidate the global structure of biological
networks. What is still largely missing, however, are
experimental studies motivated by bioinformatics predictions.
For a sizable fraction of genomic ORFs, up to 30-40% of
all genes,91 no experimental information is available, and
no meaningful function prediction can be made based on
homology information or context-based techniques. These
ORFs are labeled “conserved hypothetical” if they have
homologs in multiple genomes, or just “hypothetical” if they
occur in only one genome (in which case they are also often
called genomic ORFans). These latter alone probably con-
stitute as much as 15% of microbial gene complements,
although many of them may be artifacts of gene prediction
and not be expressed.92

It has recently been argued that directed experimental
investigation of hypothetical proteins would be extremely
beneficial for the genomics community. Roberts93 proposed
to form a consortium of bioinformaticians with the goal to
assemble a comprehensive list of hypothetical, conserved
hypothetical, and putatively misannotated proteins. The list
would be prioritized, in particular giving stronger preference
to conserved hypothetical ORFs because of their presumed
higher functional importance and also because they have
higher chances to actually encode proteins. Possible criteria
for setting priorities on functional targets are phyletic
distribution (with preference given to particularly ubiquitous
genes), essentiality, availability of three-dimensional struc-
tures and information on expression and binding, as well as
practical considerations, such as the likeliness of a protein
yield to solubilization, expression, and purification studies.94

With regard to the latter task, reasonably accurate compu-
tational algorithms to predict the experimental behavior of
proteins from their sequences are beginning to emerge.95 This

approach bears similarity to the target selection process
generally adopted in structural genomics efforts,96 where
proteins for experimental structure determination are picked
based on a broad spectrum of bioinformatics criteria,
typically including the requirement for target proteins to have
no related known structure. In the second step, experimental
labs throughout the world would be invited to pick targets
of interest from the list and conduct their thorough experi-
mental characterization using dedicated funding. In a comple-
mentary approach, one would focus on so-called “orphan
functions”sthose functions that are biochemically character-
ized but for which no gene has yet been found.97

While experimental genome annotation as outlined above
is still in its infancy, the first efforts in this direction are
already underway. TheShewanellaFederation has launched
a project to characterize hypothetical proteins (which con-
stitute 40% of genes in this organism) in a multistage
program which involves expression studies on genes and
proteins, generating tentative functional predictions, and then
experimentally verifying them for high-priority targets. To
aid the prioritization process, a novel classification scheme
for functional assignments was developed98 that takes into
account both bioinformatics criteria (availability of homologs,
known motifs) and available biochemical knowledge. Out
of 538 hypothetical proteins, exact biochemical function
could be ascribed by similarity searches to only 3% of gene
products, and an additional 3% obtained well-defined func-
tions with unknown specificity. Further, two categories
encompass a total of 28% of genes for which only coarse
function assignments could be made based on a variety of
annotation attributes, ranging from conserved sequence
motifs to protein interaction data, and for an additional 13%,
some partial functional insights could be derived. Finally,
conserved expressed proteins andShewanellaspecific ex-
pressed proteins constitute 35% and 17% of the dataset,
respectively. This functional breakdown of hypothetical
proteins in a prokaryotic organism is extremely illuminating
and will definitely serve as a model for other similar studies.

Directed experimentation is also a valid option for verify-
ing gene predictions made by automatic means. The
ENCODE (Encyclopedia Of DNA Elements) project99 is
aimed at identification and comprehensive experimental
characterization of all genetic elements in the human genome.
Other efforts are focusing on validatingab initio gene
predictions by microarray and PCR experiments.100

6. Automatic Annotation of Genomes

6.1. Annotation Transfer by Homology
In spite of the growing sophistication of bioinformatics

methods, an overwhelming majority of computer-based
functional assignments for proteins continue to be made by
the traditional approach, which involves imputing annotation
from one or several previously annotated gene products to
the query protein based on a sufficiently significant degree
of similarity. In the UniProt database, more than half of the
functional descriptions have the status “By similarity”. All
automated genome analysis systems use BLAST101 or
FASTA102 searches as their primary functional prediction
engine.

In general, annotation transfer by homology (ATH) can
give spurious results either because the available similarity
is not sufficient to warrant the transfer of information from
the source to the target sequence or because the annotation
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of the source sequence is already wrong. Provided that the
source annotation is correct, ATH is a reliable option when
it comes to annotating genomes which are only minor
variations (e.g., closely related strains or nearly identical
viruses) of already known genomes.103 But what is the
accuracy of ATH for the cases of lower sequence similarity
levels which are typical in genome annotation practice?

Quantifying the correlation between protein sequence
similarity and similarity of function is much more difficult
than quantifying that between sequence similarity and
structural relatedness. Resemblance of protein structural folds
can be objectively measured, for example by calculating the
root mean square deviation between optimally superimposed
structures and then comparing it with sequence alignment
scores.104,105Wilson et al.106made an early attempt to quantify
the functional relatedness of individual structural domains
based on a combination of GO assignments and enzyme
classes. They defined four possible scenarios for any pair of
domains: (i) general similarity, either both domains are
enzymes or both are nonenzymes; (ii) same functional class,
both domains share the same top-level enzyme class or GO
category; (iii) same precise function, both domains share the
exact same enzyme classes and GO categories; (iv) no
functional similarity at all. On average, 20% sequence
identity was found to be required for general functional
similarity, 25% identity indicated a common functional class,
and 40% identity typically guaranteed a precise functional
match. Devos and Valencia107 in their influential study
arrived at similar conclusions by calibrating the reliability
of ATH using Riley functional classes ofE.coli proteins (see
above), EC numbers, SwissProt keywords, and structurally
defined active sites. Multidomain proteins were shown to
be much less functionally conserved, thus requiring substan-
tially higher sequence identity levels for reliable transfer of
annotations.108 Finally, Rost109 and Tian and Skolnick110

argued that enzyme classes are even less conserved than
reported in the previous publications if no requirement of
shared structural folds is imposed on sequences and database
bias is removed by clustering sequences to correct for
unequal representation of large families. According to Rost,
even extremely low BLAST E-values (below 10-50) may not
be sufficient for confident transfer of complete four-digit EC
numbers. Moreover, at sequence identities below the 50%
level, it is not even always possible to distinguish enzymes
from their nonenzymatic homologs.111

The core methodological issue in ATH is the possibly
accurate identification of true orthologs which, apart from
some special cases such as nonorthologous gene displace-
ment, perform equivalent, albeit not necessarily completely
identical, functions in different organisms.112 While, for
many, especially prokaryotic, protein families and sequenced
genomes, ortholog databases such as COG readily provide
precomputed and verified information on orthologous rela-
tionships, accuratede noVo identification of orthologs poses
a significant algorithmic challenge. In complex eukaryotic
genomes, finding an ortholog is complicated by one-to-many
or even many-to-many orthologous relationships.113 The
operational definition of orthologs frequently used in whole-
genome comparison involves, at the very minimum, the
requirement of a highly significant global alignment over
the major part of the protein length and, furthermore, the
presence of a best bidirectional or even triangular (involving
three genomes) similarity hit, although much more sophis-
ticated methods properly handling paralogous relationships

exist (e.g., ref 114; see also ref 115 for comparison and
discussion).

Over the past decade, phylogenomic approaches have been
introduced which infer functions of proteins by considering
their evolutionary relationships with other genes.116,117Phy-
logenomic function inference for a given query protein
involves multiply aligning this protein with its homologs
found by a database search, calculating a phylogenetic tree,
and then tracing the evolutionary history of the query protein,
in particular paying attention to potential duplication events
and taking into account apparent paralogs. If properly done,
phylogenomics inference of function is very accurate and
avoids many typical errors intrinsic to straightforward
ATH.118 Nevertheless, an overwhelming majority of func-
tional predictions are still being done by the highest BLAST
match approach. Brown and Sjo¨lander119 attribute this state
of affairs to general unawareness about the actual error rate
of ATH, understandable inertia of genomic software design-
ers in embracing novel techniques, and a much higher level
of sophistication and computational complexity of phyloge-
nomics analyses, in particular a strong dependence on the
quality of multiple sequence alignments and tree-building
procedures. For large, divergent, and complex eukaryotic
families, complete automation of phylogenomic inference
may not be easily possible and some degree of manual
curation of the alignments and trees may be required.
Recently, more automated and statistically rigorous methods
have been reported,120 and attempts to model human logic
while performing phylogenomics analyses using expert
knowledge have been undertaken.121

6.2. Automatic Functional Class Definitions

One special and particularly important flavor of automatic
annotation involves attachment of GO or FunCat labels and
EC numbers to genomic proteins, which is currently seen as
one of the core elements of genome annotation and is heavily
relied upon in virtually all modern genome analysis systems.
While functional roles (as well as the first three digits in
EC numbers) are group characteristics and thus provide much
coarser functional assignments than specific SwissProt-like
description lines of individual proteins, they have the great
advantage of belonging to a generally accepted controlled
vocabulary and thus making predictions made by different
researchers for different organisms, experiments, and condi-
tions easily understandable and directly comparable.

Naı̈ve GO term extraction from the best BLAST-matched
sequences122,123is an efficient high-throughput approach, but
it suffers from all typical pitfalls of transitive sequence
annotation, as discussed above. More advanced methods
attempt to alleviate the problem by combining homology-
based inference with orthogonal sources of information,
including text mining and predictions of protein cellular
localization,124 and by applying machine learning techniques
(specifically, Support Vector Machines) to the annotation
attributes associated with top-scoring BLAST hits.125 The
UniProt database relies on existing mappings of GO terms
to other extensively annotated protein attributes, particularly
InterPro domains (Interpro2go) and keywords (spkw2go),
which are available from the Gene Ontology consortium and
are being frequently updated.64 For example, InterPro
domains are reliably annotated with GO information, and
HMM-based InterPro searches are very sensitive and specific.
Thus, transferring GO information from strong InterPro hits,
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where available, is a much more reliable option than using
the best BLAST hit.

For enzyme classes, beyond copying EC numbers from
the best database search hit, advanced consensus methods
explore conserved residues of the active site determining
enzyme function. Tian et al.126 identify residue positions
determining the functional specificity of enzymes by com-
paring sequence profiles of homofunctional families an-
notated in SwissProt with the same EC number and broader
supersets of these families which also include additional
representatives found by database searching and not neces-
sarily sharing the same EC number. Such sets of functionally
determining residues provide very high discrimination power
for four-digit EC numbers and were reported to outperform
KEGG assignments when applied to theE. coli genome.

An alternative approach consists in predicting functional
classes from sequences without any reliance on homology
information. Natural language processing methods that
extract GO terms from millions of PubMed abstracts show
great promise in this respect.127,128The ProtFun method129,130

uses neural networks trained on a large variety of protein
attributes directly predictable from sequences (cellular
localization, post-translational modifications, secondary struc-
ture, and others) to associate Riley functional roles, GO
terms, and EC numbers with gene products.

The main difficulty in meaningful assignment of functional
classes lies in the hierarchical organization of various gene
ontologies. Most of the computational methods developed
so far are limited to predicting assignments at one selected
depth in the hierarchy. As noted by Barutcuoglu et al.,131

constructing individual classifiers for each functional class
(e.g., GO category) violates the fundamental requirement that
the genes belonging to this class must also belong to the
parent class on the hierarchy. In what appears to be the first
application of multilabel prediction techniques to gene
function analysis, the authors directly incorporate the con-
straints of the hierarchical classifications by combining
multiple single-class classifiers in a Baysian framework.
Applied to GO annotation, this method yielded substantially
improved prediction accuracy, especially for deeper (more
specific) nodes of the GO graph. Several other modern
approaches exploit child-parent relationships between GO
terms and the general topology of the GO graph.132-134 The
GOtcha algorithm133 proceeds by first making BLAST-based
assignments of individual leaf nodes of the GO hierarchy to
the query sequence. These assignments are then propagated
to parent nodes, appropriately weighted, all the way to the
root node of a given GO ontology (molecular function,
biological process, and cellular component), such that if a
specific parent node has several child nodes picked by
BLAST, the GO term corresponding to this node will be
assigned with much higher confidence than each of the child
nodes, as the parent node is corroborated by several
independent similarity hits. In particular, if several BLAST
hits point to nodes on one of the three GO ontologies, then
the top-level root node of that ontology will be assigned to
the query sequence with the highest confidence, as it has
the highest support. GOtcha was shown to provide much
higher specificity and selectivity compared to the best
BLAST hit method.

A new class of recently developed methods leverages
biological networks of different types to propagate knowl-
edge from confidently annotated sequences to uncharacter-
ized proteins. In principle, this approach is logically con-

nected to deriving network modules (see above) because
ascribing hypothetical genes to a well-defined functional
module is a powerful method of function prediction. On the
most basic level, a certain node of the network can be
ascribed to one or more functional roles that most frequently
occur in the annotation of other nodes to which it is
immediately connected135 or of those nodes that are separated
from the target node by a certain predefined number of
edges.136 More sophisticated algorithms introduce weighting
of edges according to the reliability of the underlying
experimental data they are derived from and explicitly take
into account the topological properties of the network.137,138

Another important principle guiding propagation of knowl-
edge is that interconnected nodes that often correspond to
functionally coupled proteins are expected to have at least
partial commonality in their functional annotation.139 Mass-
jouni et al.140 described the VIRtual Gene Ontology that relies
on a functional linkage network constructed from protein
interaction and gene expression data. For each node on the
network corresponding to a hypothetical protein, functions
of the neighboring nodes are mapped using the GAIN (Gene
Annotation using Integrated Networks) algorithm,141 which
takes into account the weights assigned to connecting edges
and the topological properties of the network neighborhood
and operates under the constraint of maximal consistency
of the assignments made for connected nodes.

6.3. Guilt by Association: Context-Based
Function Prediction

The availability of complete genome sequences sparked
a principally new group of computational approaches to gene
function prediction. For many genes that cannot be charac-
terized by homology searches, useful functional hints can
be delineated from their genomic context (Figures 5 and 6).
Several algorithms of this type were pioneered nearly
simultaneously as soon as the number of finished genomes
became sufficiently high (over 10) to allow for statistically
significant inference. The conserved genomic neighborhood
method142,143 deduces functional coupling based on short-
range colinearity between genes in different prokaryotic
genomes. It exploits nonrandom proximity of genes involved
in operons, which represents a specific complementary
information signal not recognizable by sequence comparison.
Phylogenetic profiling144 relies on the correlation of protein
occurrence across a set of genomes to predict functional
associations. Similarity of evolutionary patterns shared by
two proteins may indicate that they interact with each other
directly or share a common functional role. The underlying
idea is that many pathways or complexes require all their
members to be present in order to fulfill their functions. The
gene fusion approach145 detects those pairs of proteins that
are encoded by two different amino acid chains in one
genome while constituting a single multidomain molecule
in another genome. Further possibilities to identify genes
whose functions may be related include linguistic methods
that exploit co-occurrence of gene names in literature
abstracts as well as identification of conserved coexpres-
sion.146 Because genomic contexts are more conserved
between closely related species than between distant ones,
more recent implementations of context based methods
incorporate phylogenetic analyses in order to take into
account evolutionary distances between the genomes com-
pared147,148 and thus achieve an improved signal-to-noise
ratio.
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A new algorithmic twist involves the application of context
based methods to individual protein domains rather than full-
length protein chains. A large variety of widely spread
interaction domains that mediate molecular interactions are
frequently combined in proteins in a complicated mosaic
fashion149 and often represent major functional entities in
cellular interaction networks. Clustering protein domains with
similar phylogenetic profiles allows researchers to build
domain interaction networks which provide clues for de-
scribing molecular complexes.56 Similarly, the Domain
Teams method150 considers chromosomal neighborhoods at
the level of conserved domain groups.

From today’s point of view, employing context based
methods on a large scale for genome annotation is essentially
equivalent to joining protein nodes on a global network of
functional associations by edges either derived by the
different computational techniques described above or sup-
ported by experimental data. Each edge gets ascribed a
numerical score reflecting the confidence of the underlying
computational or experimental evidence. This general ap-
proach has been implemented in several highly valuable
resources (e.g., Predictome,151 Prolinks,152 Phydbac,153

STRING154) that systematically maintain collections of
functional links between gene products for a large number
of genomes and provide software tools to navigate and
analyze gene association networks. The most comprehensive
system, STRING, currently allows exploring various types
of genomic context for 800.000 genes from 200 organisms.
Integrated context analysis systems represent efficient large-
scale multigenome annotation tools. They have been used
to provide functional assignments for hypothetical genes,155,156

to identify missing genes in known metabolic pathways,157,158

to reconstruct novel, experimentally uncharacterized meta-
bolic pathways,159 and to study gene-phenotype relation-
ships.160

7. Assessing and Improving the Quality of
Automatic Genome Annotation

7.1. Errors, Errors Everywhere
The core problem in automating genome analysis is

without a doubt the notoriously high level of errors made
by unsupervised algorithms. It is extremely difficult to
reproduce computationally the complex decision process of
a human curator, who, while making a decision on a
particular assignment, will survey literature, carefully analyze
available alignments, and heavily rely on his specific
experience and intuition. Typical sources of annotation errors
have been reviewed before.161,162In addition to fundamental
difficulties in annotation transfer by homology, as discussed
above, dubious assignments may be caused by spurious
similarity hits stemming from compositionally biased protein
sequences and failure to take into consideration multidomain
organization of proteins. Further complications include wrong
gene models and unrecognized pseudogenes. Annotation
errors systematically pollute sequence databases, leading to
the gradual deterioration of the total corpus of available
information and undermining further analysis efforts.163

7.2. Annotation Benchmarks
Ideally one would wish to be able to evaluate the

specificity and sensitivity of automatic functional assignments
pretty much the same way it is done in other areas of

bioinformatics, such as protein secondary structure prediction,
where generated predictions are rigorously compared with
experimentally determined structures. However, objective
assessment of the quality of functional annotation is a much
more difficult task due to the scarcity of trusted data that
could be used as a standard of truth. Even for the best
experimentally characterized genomes, such asE. coli and
S. cereVisiae, comparison of predicted and “known” func-
tional information expressed in natural language is far from
trivial, as the notion of protein function is elusive, is
semantically ambiguous, and may depend on a particular
cellular context. For most of the ORFs in newly sequenced
genomes, and even for many important model organisms,
no experimental verification of predictions can be made.
Brown and Sjo¨lander119 estimated that only 3% of nontrivial
UniProt annotations have experimental confirmation.

At least three different approaches to assess the quality
of automatic function assignments, apart from direct experi-
mental verification, are conceivable. The early estimates of
the error rate of gene annotation were made by comparing
assignments made manually by different groups and/or by
automatic systems, most notably GeneQuiz.164 While no
statement can be made in the majority of cases where the
predictions agree (they may be all wrong or all correct), those
cases where they disagree point to potential errors. Just
recently, the same approach has been applied by Mi et al.165

to compare functional annotation of theD. melanogaster
genome made by the GO consortium and by the Celera
Genomics team, which used its own in-house Panther
ontology.166 An additional benefit of such comparisons is in
assessing the overlap between the different annotation
schemes and ontologies and identifying the knowledge gaps
that need to be filled.

The second approach relies on estimating the consistency
of annotation for sequence-similar gene products across
several different genomes. According to Devos and Valen-
cia,107 the chance of error varies greatly dependent on the
particular type of the annotation attribute. In three prokaryotic
genomessM. genitalium, H. influenzae, andM. jannaschiis
the percentage of erroneous predictions made by the GeneQuiz
system167 was estimated to be 2% for the first EC digit,
around 20% for SwissProt keywords, over 30% for the last
EC digit, and even higher for substrate-binding sites.

Finally, annotation results can be benchmarked against an
accepted high-quality standard of truth which is believed to
be largely “correct”. To assist such comparisons, Iliopoulos
et al.168 classified errors arising in the process of transitive
(similarity based) annotation into seven classes, scored by
their severity in descending order: false positive (7),
overprediction (6), domain error (5), false negative (4),
underprediction (3), undefined source (2), and typographical
error (1). One important feature of this scale is that it assigns
a significantly higher weight to over- rather than underpre-
dictions. The rationale for this choice is that overpredictions
have a much higher potential to pollute sequence databases
with wrong information. The authors reported comparable
general quality levels of the originally published annotation
of the Chlamydia trachomatisgenome and automatic as-
signments produced by the GeneQuiz system,167 as judged
by careful manual inspection. At the same time, the overlap
between these two annotation efforts in terms of completely
correct assignments was only 51%, highlighting different
biases in human and machine-generated judgment.
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For four bacterial genomes, a specially designed functional
annotation benchmark set169 has been made available which
includes hand-curated MIPS FunCat assignments as well as
a number of precalculated protein attributes (with their
associated scores), such as BLAST similarity hits, InterPro
domain assignments,170 similarity-derived fold assignments,
and so on. This dataset can be used for assessing the
performance of machine learning techniques for predicting
protein function from sequences.

7.3. Annatomics: Data Mining in Genome
Annotation

Automatic generation of genome annotation is in some
sense comparable to high-throughput experimental tech-
niques, such as genome sequencing or two-hybrid essays.
Similar to the familiar notions of genome, proteome, tran-
scriptome, interactome, and a dozen or more other -omes,
the author would like to coin the termannatometo describe
the entire body of annotation data accumulated in today’s
genomic databases. Just as any other omics results,anna-
tomicsdata may be imprecise, inconsistent, and wrong. A
difficult and timely challenge faced by bioinformatics is to
design intelligent systems aimed at improving the overall
quality of machine-generated annotation.

Is it possible to reduce errors in genome annotation? The
total annatome can be considered to be a collection of
records, one per each of the 6 million genes known today,
containing a varying number of attributes, ranging from just
a few minimal descriptors (length, pI) for hypothetical
proteins to dozens of annotation items (motifs, EC numbers,
localization, structural folds, etc) for better characterized
proteins. Analyzing the current annatome data by data mining
techniques may help researchers find interesting statistical
trends in this large collection of records and may point to
potential spurious assignments.

7.4. Automated Correction of Annotation Errors

One way to deal with the problem of error correction is
to detect inconsistencies in the annotation of related proteins
forming a sequence cluster. This approach is conceptually
similar to knowledge propagation in biological networks, as
described above. Based on the observation that more than
95% of proteins have more that two annotation attributes,
with 10 being the average number, Kaplan et al.171 imple-
mented a system that represents protein-keyword relation-
ships in biological databases in the form of a hierarchical
graph, each node of which symbolizes proteins sharing
unique combinations of keywords. While analyzing protein
sets attributed to the same functional category by automated
annotation methods, observing certain proteins occupying
areas on the graph that are distinct from the main bulk of
the collection clearly points to potential false annotations.
More generally, one can define a score which indicates how
similar are the sets of annotations for any given pair of
proteins.172 Functionally related proteins are naturally ex-
pected to have more similar annotation than unrelated ones.
Based on the defined similarity measure, proteins are
clustered into groups with homogeneous annotation, the so-
called property clusters. This method can be used to detect
false positive annotation by any given automatic method
aimed, for example, at detection of conserved sequence
motifs. The idea is to find those proteins that share the same
annotation, e.g., a sequence motif, from the test method and

at the same time form disjoined subsets as a result of
clustering in the space of other annotated features. Alterna-
tively, annotation errors can be identified by comparing
protein groupings obtained by sequence and annotation
clustering.173 Again, the underlying assumption is that the
more sequence-similar proteins are, the higher chance they
have to share functional annotation.

Another promising tactic in intelligent filtering and
improvement of biological annotation is through knowledge
discovery techniques aimed at detecting common patterns,
rules, or anomalies. In addition to being widely used for
mining biological literature174,175 and experimental data,176

rule-based techniques have been applied to predict protein
annotation features from a set of other annotation features.177

The RuleMiner algorithm178 extracts characteristic annotation
features associated with protein function groups defined by
sequence similarity, shared conserved motifs, and a common
taxonomic distribution. Rules learned from the annotation
of such groups may be applied to classifying yet uncharac-
terized instances, and they can be combined with the results
of similarity-based annotation transfer using knowledge-
based voting procedures.179 Major protein annotation efforts
routinely use rule-based procedures for checking the integrity
of information, finding minor errors, and automating trivial
annotation procedures which do not require human inter-
vention.180-182 Uninformative pieces of information (e.g.,
description lines containing only words such as “hypotheti-
cal”, “putative”, and “unknown” transferred from the best
similarity hit) can be filtered out using simple lexical analyses
based on specially prepared vocabularies.167,183

A more sophisticated approach to this problem involves
automatic learning of rules from a highly curated and reliable
database, such as Swiss-Prot, and then using these rules to
further improve annotation either in the same database or in
another automatically generated database, such as TrEMBL.
Kretschmann et al.184 applied the C4.5 data mining algorithm
to derive decision trees representing the knowledge on Swiss-
Prot keywords. Rules obtained in this fashion combined with
information on sequence groups gleaned by sequence analysis
can be applied both for consistency checks within Swiss-
Prot and for generating keywords for new TrEMBL entries
with high accuracy. Conversely, exclusion rules for a specific
protein group (e.g., sharing the same sequence motif) can
be generated by the C4.5 algorithm to detect contradicting
annotation items, as implemented in the Xanthippe postpro-
cessing system.185

Rules can be extracted more efficiently from a very large
database using the formalism of association rule mining and
the well establishedApriori algorithm.186 Association rules
are simple implications that can be formulated in the form
(A1 & ... & A n) w Z, where A1 ... An (the left-hand side of
the rule) and Z (right-hand side) are different features, and
the rule means “database entries that possess all features A1

... An are likely to possess feature Z”. Each rule is
characterized by its coverage, the number of entries in the
database that possess all features A1 ... An, its support, the
number of entries satisfying both the left and the right sides
of the rule simultaneously, and its strength, which is
essentially the probability that a given database entry will
satisfy the right side of the rule given that it satisfies the left
side of the rule. Association rules have found their application
in bioinformatics for identifying pairs of related GO terms,187

interpreting gene expression data,188 and investigating rela-
tionships between different types of genomics data.189
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Artamonova et al.190 applied association rule mining for
identifying errors in protein annotation data. The strategy is
to find rules with the strength very close, but not equal, to
1.0, which means that such rules have a minor number of
exceptions, and then to identify all proteins that constitute
exceptions from strong rules. Applied to the SWISS-PROT
database, this approach yielded 7396, 4956, and 4046 rules
with strength greater than 0.95 and coverage over 50 which
were not fulfilled exactly once, twice, or three times; these
rules typically infer keywords and Intepro domains from
mixed left-hand side annotation items. In order to test
whether exceptions from strong rules actually correspond to
annotation errors, subsequent releases of the SWISS-PROT
database were compared and additional manual verification
was conducted. It was indeed found that exceptions from
strong rules get corrected substantially more often than the
rest of the annotation. For unsupervised annotation automati-
cally generated by the PEDANT genome analysis system,
the total fraction of exceptions from strong rules classified
by manual analysis as errors was as high as 68%. It was
also found that most of the errors in the SWISS-PROT
database are underpredictions (i.e., absence of features that
would be expected based on association rules), consistent
with the prudent manual annotation process adopted by
SWISS-PROT, while in PEDANT errors are typically caused
by overpredictions.

8. Computational Infrastructure for Genome
Annotation

8.1. Tools To Support Distributed Genome
Annotation

Specialized software tools to support decentralized an-
notation efforts have been made available (see ref 191 for a
detailed comparison of several such systems). A growing
number of annotation consortia are joining the GMOD
collaborative effort,192 which develops standardized reusable
software components (browsers, query engines, and visual-
ization and editing tools) and ontologies for creating and
maintaining model organism databases. The Distributed
Annotation System (DAS)193 is a simple client-server archi-
tecture that allows different groups to provide their annotation
tracks to a central server based on the DAS XML specifica-
tion. Each annotation attribute has a description line associ-
ated with it and is characterized by its coordinates relative
to the reference sequence (e.g., chromosome) being visual-
ized. DAS is the central mechanism for displaying annotation
tracks within the Ensemble genome analysis system (see ref
194 for an overview of the Ensemble system). It is also being
used by the European Virtual Institute for Genome Annota-
tion to integrate annotations produced by the members of
the BioSapiens Network.195 More advanced annotation
systems, such as Otter,196 ASAP,197 Manatee (manatee-
.sourceforge.net), and PeerGAD,191 support decentralized
manual annotation and data exchange between multiple users
and sites and have built-in versioning and history mecha-
nisms.

8.2. Local Manual Annotation Tools and Viewers

Stand-alone software packages for genome display, ma-
nipulation, and editing are also available. Artemis198 is a
popular Java tool particularly suitable for visualizing DNA-
level features (GC content, codon usage, etc.) of compact

genomes; it can also be used remotely over the Internet when
run as a Java applet. To assist the gene editing process, an
excellent sequence annotation editorsApolloshas been
developed.199

8.3. Genome Annotation Pipelines and On-line
Resources

Arguably, the first ever genome analysis system was the
computer program used to automate the annotation of the
yeast chromosome fragment coding for just 182 protein
products200 and later developed into the full-blown software
package GeneQuiz.201 Several other software suites were
developed in the middle of the 1990s (MAGPIE,202 PED-
ANT,203 Genotator,204 AceDB),205 and the first Web-based
genome databases were made available. Pioneering work on
metabolic reconstruction from genome data resulted in
integrated environments such as WIT/PUMA,206,207KEGG,72

and MetaCyc.73 At the next stage of genome sequencing,
large organizations such as EBI, the Sanger Center, and the
University of California created comprehensive Web portals
to disseminate data produced by the human genome project.
Both the UCSC Genome Browser208 and Ensemble209

systematically integrate all available information for multiple
complex eukaryotic genomes, including alternative gene
models, pseudogenes, isoforms, repeats, transcripts, genetic
markers, SNPs, as well as functional annotation. Additional
evidence tracks provided by external groups can also be
accommodated.

Finally, as a reaction to the virtual explosion of the number
of genomes available, there has recently been a proliferation
of new annotation systems, each with design specifics
reflecting the purposes and scientific interests pursued by
the authors as well as their background. The genome analysis
systems available today differ with respect to the particular
software technology they are using (novel data standards,
workflows), the means of deployment and data delivery
(stand-alone software packages, Web-based resources, dis-
tributed annotation systems), the type of data (ESTs, genomic
sequences), organism type (microbes, mammalian genomes),
the scientific question they are designed to answer (e.g.,
pathway reconstruction), or the user community they target
(small research groups, large institutions).

Many of these new resources focus on the annotation of
microbial genomes and offer bacterial-specific annotation
features, such as operon prediction;210-217 the latter system
has recently been extended to handle metagenomic data.218

A useful feature comparison of many current systems can
be found in ref 215.

The SwissProt team is using its own annotation pipeline
HAMAP to produce annotation of entire microbial pro-
teomes.181 Capitalizing on quality rather than coverage,
HAMAP produces completely automatic annotation only to
those gene products that can be reliably attributed to a well-
characterized protein family based on high sequence similar-
ity, appropriate sequence length, and characteristic features;
otherwise, proteins are subjected to further manual annota-
tion.

Annotation systems for EST and cDNA sequences183,219-221

start processing by grouping sequences into clusters and
stress DNA-level similarity searches against major nucle-
otide-sequence databanks, EST collections, and other gene
indices in order to derive possibly informative gene names,
application of specialized gene finding methods, as well as
frameshift detection, repeat and vector masking, and se-
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quence quality analysis and visualization. Most of these
developments are directly motivated by specific large-scale
annotation projects.

Some systems cater to the needs of small research groups
that are not able to invest significant resources in maintaining
a bioinformatics infrastructure. As a complement to large
multipurpose resources, the easily configurable GANESH
system was developed by Huntley et al.222 to support detailed
annotation of selected genomic regions. Alternatively, as a
result of the significantly higher computing power available
today, it has become possible to create annotation Web
servers that accept entire bacterial chromosomes from
external users. In order to use the Annotation Service Engine
of TIGR (http://www.tigr.org/edutraining/training/annota-
tion_engine.shtml), initial contact by e-mail needs first to
be established, while the BASys server runs in a fully
automatic fashion and typically returns results within 24 h.223

In recent years, the idea of protocol-based genome data
processing has been popularized, which draws parallels
between the organization of routine bioinformatics analyses
and experimental lab work. Just as wet experiments are
carefully planned and then executed following a defined
sequence of steps, tools such as BioPipe224 and APAT225

allow for the creation of customized workflows from standard
modules, which typically include XML parsers for a variety
of input and output formats, wrappers for running external
applications, interfaces to SQL databases and batch process-
ing systems, and facilities for transporting the results to the
end user via standard exchange protocols, such as Web
services. In contrast to conventional integrated genome
analysis systems, protocol-based analysis pipelines have the
advantage of being highly configurable and flexible, but their
users are required to have a good understanding of software
technologies as well as substantial system administration and
bioinformatics skills. Recent releases of major genome
analysis systems, such as PEDANT, have also been equipped
with workflow-based process management (Frishman et al.,
in preparation).

9. Perspective: Genome Annotation for Systems
Biology

The goal of systems biology research is to understand and
exploit the relationships between individual molecular com-
ponents of the cell and the overall behavior of biological
systems. The principal approach to this problem involves
possibly precise reconstruction of various kinds of biological
networks in which genes are involved in order to understand
their basic organizational principles and to learn how to build
mathematical models capable of predicting how networks
react to perturbation. Genome annotation represents the
crucial first step in this process, and the quality of annotation
data is a determining factor for the success of any subsequent
model building and simulation effort. Wrong gene models,
incorrectly predicted functional specificities of proteins,
missing enzymes in metabolic pathways, corrupted biological
networks due to erroneously derived functional associations
between genes, as well as limited accuracy and resolution
of experimental high-throughput techniques affect the quality
of genome-scale metabolic reconstruction.

Beyond the mere quality problems, canonical genome
annotation as we know it today does not represent an
adequate knowledge basis for developing methods and tools
capable of predicting the outcomes of genome-scale experi-
mentation and of guiding systemic interrogation. In the recent

publications by leading systems biology groups, a need for
introducing additional dimensions to genome annotation has
been emphasized. In addition to developing a possibly
complete molecular “parts lists” for each organism and the
corresponding “wiring diagrams”, information about the
chemical states of individual components as well as chemical
transformations between them needs to be incorporated in
order to obtain stoichiometric matrices suitable for building
metabolic flux models, monitoring functional states of
biological networks, and linking them to phenotypic events.226

Further dimensions are the spatial distribution of molecular
components in the cell and changes in their structure and
behavior over time.227,228

The ultimate test for the utility of genome annotation in
the years to come will be the predictive power of models
built upon it. In fact, curation and testing of models should
be performed synergistically with curation of genomes as
part of an iterative refinement process.229 While general-
purpose genome annotation systems capable of meeting this
major challenge currently do not exist, the first pioneering
studies demonstrating the feasibility of this approach have
been conducted. Model-based improvement of genome
annotation involves detecting discrepancies between model
predictions and actual phenotype data, identifying molecular
components and reactions that would reconcile predictions
with observed cellular behavior, using a wide spectrum of
context-based bioinformatics methods and literature mining
to identify candidate ORFs for missing roles, and then
experimentally testing new hypotheses.228 Sequence-based
bioinformatics analyses combined with flux simulations have
helped to shed light on the function of currently uncharac-
terized genes.230

10. Conclusions and Outlook
The biological community is attempting to cope with the

flood of genome data by using a two-tier strategy. On the
one hand, careful manual annotation of selected model
organisms is going on, capitalizing on community action as
opposed to disparate isolated efforts. Highly curated genomic
datasets, such as GO ontology or pathway databases,
represent the essential backbone of today’s genome infor-
matics. At the same time, the main bulk of other genomic
sequences are processed automatically by software tools of
ever growing complexity and sophistication that vitally
depend on manually curated information. As the speed of
sequencing grows and bioinformatics methods mature, we
envision closer integration of automatic software tools with
sequencing machines, whereby the raw FASTA files they
produce now will be replaced by structured biological
knowledge. In a quest for personalized approaches to treat
diseases, such close integration of sequence information and
intelligent analytical tools will allow researchers to speed
up the cycle of biological discovery from raw experimental
data and its interpretation back to the lab bench. We may
live to see the time when the gene function prediction will
become a routine readout displayed on a lab monitor just as
pH measurements are today.
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